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ABSTRCT

In principle, given the potential energy function, dhe values of thermo-
dynamic variables can be computed fram statistical mechanics for a system of
mol~ls In practice for the liquid stae, however, two barriers must be over-

___jrbbPaer treat the first probem how to quantum correct the dluical
idc i thrmdymc values available from molecular dynamics, Monte

Calo, perturbation, or integral methods In order to compare with experimental
quantumn reality. A subsequent paper will focus on die second difficulty, the
effective computation of free enerly and entropy. A simple technique, derived
from spectral analss of the atomic velocity time histories, is presented here

i orthe quanum correction of classical them ynaniic values. This technique
4. ~ -~ '~.. k/a bused-on the approxiai that potential anharmonicities mainly affect the

rewquencies In the velocity spectrumn where the system behaves essentially
00c~ywhle hehigher svcrlfrequencies, bw the devat om clas

sklmecanics Is most p~ronounced, Involve sufficiently harmonic atomic

m osthat hwarmnic quantum corrections apply. The approach is demon-
co. ro ds" molecular dnmcfolwdb utr orein.The

potntil wd t decrie te iterctins ( te sste~ofwowmolecules
incude iteral ibatina deree o fredm ad tusstrngquantumn

affeC omarsoo the quantum corce yrtclvalues with experi-
mesreetssow poad alreet.s-usi-ereteto----

classical theImd ona i (wich ar also derd, r free energy and entropy)
an shown to be Imtat not only for internal vibrational motion, but also for

uitemolwlarhindered rotational and translational motions in liquid wate.
They auw presumably also Important for other strongly asociated molecules,

jithuin blomolecules, and thus should be included when comparing calculated
ionaa'" -or admeinured temodynami44c quantites. The approach illustrated heme alows
VU1s the&t calculation of thermodynamic quantumn corrections for liquids, solutions,

VTIC ~ 1.1 an lr moeue uhaplmr icuigProteins and nucleic: acid)
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FROM MOLECULAR DYNAMICS FOR LIQUID WATER

Pew, A. &m DenaW H. A. Mackay Gwy~ Ml. Miteu and Ker R. l*7&mo
Departmenit of Chemistry
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1. INTRODUCTION
In principle from the potential energy as a function of nuclear positions one can compute

from statistical mechanics the values o( the thermodynamic variables. In practice this has been
a difficult task for liquids and lre molecules such as proteins and nucleic acids. Two substan-
tia barriers need to be overcome. The fAst, which is the subject of this paper, is how to com-
pue qumaa. t reality when only u mechanics is practically avaible as a
computational tool. That quantum mechanics is essential in treating intramolecular vibrations is
universaily aKnwledgd, but It has sometimes been less well appreciated that intemolecular
motions in strongly associated liquids 1ike water also show important quantum effects. Quantum
corrections should thus be considered for stronsly interacting molecules in geneal, even for
molecules approximaed as rigid bodies, and for blomolecules. The second barrier, which is the
'*1 o a paper to follow, Is how t6 practically compute the useful, but intrinsically difficult.
free eneryI nd entm.

hr11m Ment pap Illustrates a simple molecular dynamics technique for quantum correct-
in& classical m ui, for exmple thos derived from molecular dynamics,
man" Carlo, perabton, or integral methods. This approach makm use of the velocity spec-
trum (oftft C d she vleft a --eoration spectrum), which is related to infrared, Raman,
and Inelastic u n o peu or harmic systets the velocity spectrum is directly lineld to
both daued ad *no= mecanicl thrmodynmic parameters, as it then represents the
density ot normal mode harmonlc oscillators a a functon o( frequec. Two suppostions are
used to justify a harmonic approach to estimating the thermodynamic quantum corrections: 1)
thatnhmonictes mainly affect the low frequency mmions which are nearly classical, and 1)
that hilh frequen motions, where quantum effects are more important, are nearly harm nic.
With these asumptions the quantum correctm ter a tm n€dyn c variable can be
evaluated simply from the in d over frwaee 71nivers h weighting functio for that
viable tims the veldit spemum computed frft lut e of stomic velocity time his-
tois. The weigting functions approach ero in th. . .quency reon whm anharmonici-
ties would oherwise caw problems Such a quantum correction approach is not limited, like
most other aprche, to nearly classical syems, but can equally be used to treat molecular
syms with Intrnal vibrational degres of freedom where quantum effects are very strong, for
example molr liquids, solutions, solids, and polymers, including proteins and nudeic acids,
with full inclusion of Internal dgrees of freedom.

Sesion 11 describes the dmkd calulation of snow, bea capacty, fm enefsy, and
ntropy from molecular dynamics, folowed in Section II with the theory of our quantum
colection technique. Section IV describes the calculation and quantum correction of the
eeg and heat capacity of liquid water. While quite good ageement is achieved with experi- -
mint, we emphasize that our main purpose is to illustrate the techniques and not to make the

PACS numbes: 03.653.6 1.-OJ. .615.Em. 12.60.f
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most accurate possible thermodynamic calculations. We point out that the choice of boundary
treatment can simnicantly affect the auumerical results. Section V discusses these results and
their meaning.

11. CLASSICAL THERMODYNArMICS FROM MOLECUILAR DYNAICS
The standard equationsl liniking thse canonical partition function Q and the various ther-

moynmc variables are

E - ks T2.tDJ (.

C.. E (2.2)
ar

A - - k8TInQ (2.3)

S -kar4+ klnQ (2.4)

in which E is the energy, C, the constant volume heat capacity, A the Hulmholtz fre energly,
S the entropy, ks Doltzma's constant, and T the temperature.

A. Ewerg
The enrg at. a give temnperature T may be computed from molecular dynamic in

several ways. I) aoms MMiia codtions for a set of difeent constant enrgm comola
molecular dym ie run to approximate a canonical ensemble at T. for example by a sequence
of Wieti energ frolm o mtr a Boltzmann distribution. The classical ergly of the
system E-<*P)+Vf).U

is then dmrived aman averages, symbolized by < >, over several molecular dynamics runs from
the emnseble at tompemure T in which Et is the kinetic energ and V the potential energy,
letting the positionadn momenta of the N atom be represeted by ...... ,... JrN and
p' 0 P, -. -. .PN. resedtvely. 11) Compute the temperature for several differen runs at

* ~difeent comstm value of the total energy by averaging the Instantaeous temnperature defied
In terms of the ketcenergy by

< T(O)> (31011)-1 f in, <[Vj(t))2 )>i (2.
J-1

where kg is Dltzim's contant, vj Is a Cartesian component of the velocity of one of the N
saion, rnj is the -ai of that atom, and <> here Indicates a time averw-e Fit an energy
versuis temperaure crm to the results for several rijch microcanonical molecular dynamics

A runs. AV) Aduut the kinetic ener gies during eact molecular dynamics rtin In order to represenit
the system in a heat bath at temperature F . demnstrated by Anderme. 2 In this paper we use
both approaches 1) wa 10.

3. lie eap@1ty
fly perforning microcaonical molecular dynamics runs at several different energies and

computing the averag temperature for each energy, in other words method ii) above, the heat
capacity at constant volume C, can be derived through numerical differentiation of energy E
with rese to the temperature T.

In addition, the heat capacity my be calculated in principle from the inetic energy
Ihauton for a mlcrocannfcal ensemble. With the velocity of the center of mass set to zero,
the hest capacity is given by3*'

1211

" - (2.7
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in which R is ke times Avogadro's number, the number of atoms is N, and T is defined as in
Eq. (2.6) above. Statistical accuracy becomes very important as the denominator becomes
small, which possibly explains why we did not succeed in calculating accurate values using this
a .o

C. Free energy md entro
The free energy may be computed from molecular dynamics by a technique due to Kirk-

woodi, which has been applied in a parallel manner to Monte Carlo clculations, 6 as demon-
strated by MeCZi, Swaminathan and Beveridge 7, 8 in a classical Monte Carlo calculation of the
free energy for riid molecule liquid water.

The classical canonical ensemble partition function Q(f) is defined ast

Q"() " (N!hJVN)- I ff drvdp exp-PH(rV,r,f), (2.8)
in which H(rV,PN,f) is the classical Hamiltonian of the system, the Kirkwood .' - f is a
parameter upon which the Hamiltonian depends, and (U (k T) - . Eq. (2.3) now gives

4() -1- nQ(?). (2.9)
S1 erntatn Eq. (2.9) with respect to f.gives

WI(.J.), (2.10)?,f
which allows us to write

? . ,4 ( zA ) - A (f 1) -- "  d 2.1

in which f2 is the value of the Kirkwood parameter which lives the real Hamiltonian and ft is a
value which distorts the Hamiltoaian to give a refrence system (for example an ideal gs, a
hrd sphere liquid, or a harmoic solid) For which we can more easily compute the free
energy.9 Usng Eq. (7.8), we have

bA#0(1l I SQU)
* p~. Ye or )-tf, 4 P eND.)ep(P(Vp~)

8( (2.12)

which by the ensem ble poslate of Gibbs

< H(rN .) >,(2.13)
at

where the derivative of the Hamiltonian with respect to is averaged over coordinates and
momunta from ensemble with the Hamiltonian containing the parameter f. Substituting Eq.
(2.13) into Eq. (2.11) gives

4 ( ) -A (#) - df< (2.14)

To evalute Eq. (2.14) by molecular dynamics, atomic trjectories are computed for the Hamil-
tonlam H(rAV,,V,,). o is averwad over an ensemble of these trajectories at tem-
peate T. and the ret is tmhe InterMed between f, and fl.

In this way, the classcal free energy change between the system with our real Hamil-tonAm H(rv.p.v,j 2) and a reference system with Hamiltonian H(r.v.pN., 1) can be computed.

!, - .,: .-,-..: -, , y .. ,- .-. .-, .. - .- .. , .-_... .-_... . . w...... - - . . . . . .. . . - -. . , ..
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We choe the reference system to be one for which we can compute the classical free energy
mor tractably.

•., The entropy S of the system may then be calculated using

S - (E- A)T. (2.16)

We will illustrate in a subsequent paper the actual molecular dynamics calculation and
quantum coretion of the free energy and entropy of liquid water using approaches based on
the Kjrkwood technique.

M. QUANTUM CORRECTIONS FROM CLASSICAL MOLECULAR DYNAMICS
Outside of the trivial correction for vibrational zero point energy which may be calculated

from spectroscopic data10 and which is generally introduced as a constant in the potenti,, func-
tion, the vast mjoity of work in quantum corrections to classical thermodynamic computations
stum from a method first introduced by Wisnert t and KIrkwood.12 13 In this approach the free

3 nry Is expanded in powers of h2, and the first term in the quantum correction to be added to
the cdsii value of the free energy is shown to be proportional to the classically averaged sum
of the squms of the forces exerted on the particles in the system. The Wigner-Kirkwood tech-
@kWs ho bee modifid, extended and tested by many workers. 4"2 Others 3-' 2 have examined
i-vuaimm mebod to handle nondiffereandable potential functions which apply, for example, to
bId spboms or s=e wells. Derker and Henderson have written a comprehensive review of
N Ikde which ihdude an extenive section on quantum corrections. 6

othor qumam correion method by Doll and Myers 33 is based on the path integral
aI d of ft eina d Hlbbs. 34 It involves the calculation of an effective potential Vff in

the b seep of a Mnse Cafo technique. In the second stage, Ve, is used to calculate the
ruo betwee the qenumimMechanical and classical parition functions. Stillnger3s discusses
te euler sow dalo of effective potentials for pairwse potentials.

b addition to the quantum corrections considered here there are the effects of the sym-
.ammy ustio ns an quantum stat. imposed by Fermi-Dirac and Dose-Einstein statistics. In
the twmperatm uop of kn here these effects are negiigible.12 13. 36

A --aivego of all the previously cited techniques, except the vibrational zero point
sowPo uneis, Is thdi they are ordinarily restricted to systems with small quantum effects.
The tod e presI t in this paper may be applied when quantum corrections are lrp, for

Ssm le to Ia vibations.
Od ead Sberaps37 discuss the quantum corrections for liquid water. Using approxi-

maim to the effects of Ubrational and vibrational frequencies, they calculate the quantum
medmical contributions from vibrational motion to energy and constant pressure heat capacity.
The quaitum contributions minus the classical values give their quantum corctions. They

disues th shft in the vibradond frequency of watr as it enters the liquid p which
chaW the zo point gy. This is necema because they use rigid molecules. The type of
nmilid potential which we use Includes both intra- and intermolecular degrees of freedom and
bt In pinciple (but not yet in practice due to potential energy function inaccuracies as is dis-cuand below) can take into account the frequency changes from gps to liquid.

SThe quantum corrcton technique used in the present paper involves calculating the velo-

city spectrm S(P) from molecular dynamics and then integrating S(P) over all frequencies
with a weighting function which is the difference between the quantum and classical harmonic[weihtng functions for the termodynamic variable of interest.

A. Washy spnamd
s.The vlocity spctu $(v) o a classical system of N storm in equilibrium is defined as

• $(O)- 4f mj<D[v,(t)]>, (3.1)
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in which P is frequency, P - () 71' in which ks is Boltzman's constant and T is the tempera-
ture, m is the mass of the atom corresponding to the ith Cartesian velocity component as a
function of time Vj (t), and < > indicates an average over the ensemble. The spectral density
operator D (for which windowing and window correction techniques are described else-
where318. 39 ) is evaluated in terms of probability per unit angular frequency,

D[vj() a (2)'lim- dt evp(-2, t)(t) .(3.2)
27 -

The velocity spectrum may also be computed from the Fourier transform of the velocity auto-
correlation function. Note that the velocity spectrum can be computed separately for different
subsets of atoms (for example, different elements, different chemical environments of the same
element, or different molecules) and the velocity spectrum S(W,) can then be computed as a
sum of the effects from these different subsets of atoms. Thus, a we wil see, the quantum
corrections also can be partitioned among the different subsets of atoms. Even though once the
dynamics, i.e. the set of velocities (vj (W), is determined, the quantum corrections may be com-
puted separately for different subsets of atom, it should be remembered that normafly all
atoms together 6ontribute to determining the dynamics.

It will be usefu below to know the value of the integral PPdS,(,). The Fourier

transform of a real function, eg. v(t), has an even rea par and an odd imaginary pan 40 The
isquare ofm the atouo value of sa a Fourier transorm, e.g. Dv. (t)v1, is a real even function.

A lin combination of red even functions, e.g. S(P), is also a real even function. Therefore
(-,) - (W) which allows us to write

dPS(v) f fdrSW/)2. (3.3)

Substituting Eq. (3.2) into Eq. (3.1) and inserting the result into the right side of Eq. (3.3)$IV=
- ~ 12

I S M f m< (I exp(-I2vv > (3.4)

La
10) M VO) if --t. < t < - 35.. vJ(t) "-o f,) v t (3.5)

oderwb.,
mile the Fmai taMO o of vJ() be Rj1(), i.e.,

P76 - et xp-12s,)v PJ fdt exp(-12wvt) vP(fW. (3.6)

Suh du Eq. (3.6) A o Eq. (3.4) oves

ftiSW Pdv~rf uu<*1176I)1'> . (3.7)

Exchanging integration and the v- lmt lives

drS f) j <ip a, , ( ' (3.8)
--t P ---- r

Dy Paeva's theorem, 4

d &12 , I IV, t12 J&(V t)2(39

..

.. . . .;•.* ; * * . . . '.-.* ;.I: *. v~2 ~i ki
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since vj(t) is a real function. Substituting Eq. (3.9) into Eq. (3.8) gives

dvSl) - m- dt v,(6) 2> (3.10)

-rnv. 2rM-20 f < on M (vi(t) J> . (.
j. , ,-- I r 2,

Since by classical equipartition of energyI

"i-mf a-vo)) (3.12)

in which < Et > is the averae kinetic energy,

dwS(v - ZB3N12PJ - 3N, (3.13)

i.e. the integral of the velocity spectrum from zero to infinite frequency is just three times the
number of atoms, which will be true for any potential, harmonic or not. This relation can be
used a a check on the acuracy of computation of S(P), and to interprete S(,) in terms of an
equivalent deity of normal modes even for anharmonic systems.

The diftion coefent has a particularly simple expression in terms of the velocity spec-
trum. The diffsion coefficient of a particle with position history r(t) is deffied = 41

f-I UM .L. <[r(?) -r(0)12> (3.14)
3 ,-- 2,r

where < > indicates an ensemble verae. Letting the three Cartesian components of r(t) be
x(t), y() and z(t), we have

l- 1- Im ' <[x(i) -x(0) 2 + jy(,r) -. (0)12+ z(,r) - :(0)I2>. (3.15)
3,--2,r

For isotropic systems, the equation may be simplified to

B- Ur . l < [X(vr)- x(0)]2 >, (3.16)

~41 or
B L I- <x() -x(-T)1>, (3.17)

whee x() now represents my one of the three Cartesian components of r(r). f we let
D[,l(s)] deote the value of the spectral density at zero frequency, then Eq. (3.2) becomes

D.[v (t)] - (2') , a L[X(r) - x(--)] 2. (3.18)

Combning nE. (3.17) ad (3.18) we get
B - w<D6Ivj(I)]>. (3.19)

If S() is restricted to equivalent partki, then Eq. (3.1) becomes

S() - 4wp3 u <Dtvj(M)> - 12vMmO<D(vj(t)]> (3.20)

wher M partides an els nodld each of mas m. Then

-- < vj (01> - S(012w ,w (3.21)
and thus the difftman cmm B is related to the zero frequency value of the velocity spec-
ua. S(0) by

b.

,;1
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D - S(O)ll2MmO, (3.22)
in which M is the number of equivalent particles. m is their mass, and - (kg T)- ' in which
k# is Boltzman's constant and T is the temperature. The most usual application of Eq. (3.22)
is to consider the particles to be molecules and to compute the diffusion constant from the zero
frequency value of the velocity spectrum of the center of mass of the molecules.

B. Hamnmic lpwlmie
We quantum correct the classical thermodynamtic variables using a harmonic oscillator

approximation. This correction is based on a division of the dynamics in frequency space. The
low frequency region is viewed as nearly classical but containing the major anharmonic effects,
and the high frequency regoon is viewed as nearly harmonic and thus can be quantum corrected
exactly within the limits of the harmonic approximation.

Consider a system of N atoms as linked by harmonic potentials,

V6N *2+y1 Arrk (32):' 2 .1 a j - or it

in which A ad Ark ar displacements from a potential minimum and Vo is the potential
energy at that minimum. Such a harmonic situation can be approached classically in the limit
of small atomic motions about a potential minimum, i.e. at low temperatures, but one should
remnmber that quentum wave functions sample the potential in a region about the minimum
even at absolute zero, and thus anhanonity, both explicit and due to coupling by fite dis-
placems, will always play a role in real systems. Nonetheless, we believe that at higher fre-
quencies an analysis which us the finite temperaum classical velocity spectrum interpreted as
if it were fully harmonic will usually sufficiently well represent the thermodynamic quantum
corrections.

In the harmonic limit, a normal mode analysis allows us to view the system as a set of 3N
:A harmonic oscillators with q1 a a single oscillator partition function. The total canonical pari-

ton function 0 for the system can then be expresed in terms of the partition functions qj for
the individual modes as

Q" j qj (3.24)
J.-I

or

.In - f Inqj. (3.25)

If the normal frequencies am continuously distributed we may take the integral

InQ - d dS )ln q(&) (3.26)

where S(P) is the density of normal modes with frequency Y.
To show that the velocity spectrum of a system of particles linked through harmonic

potentials represents the density of normal modes, the 3N time varying Cartesian position com-
ponents, xi ... Xjv, am first represented in terms of normal coordinates. We have4 2

x" - (m)+ a'qd (3.27)

qj - AuI~n(apjt + 0) (3.28)
where q, .... q3,v are the normal coordinates, .t .... w3v are the characteristic normal
mode angular frequencies in which 2rv, - ws, A, is the jth normal mode amplitude, 9, is its
phase, and a* are constants scaled such that



wit, q)w*So niso

tab g aa~ -(3.30)
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reduced energy of the harmonic oscillator, 0 - (k,9 T)- , h is Planck's constant and v is the fre-
quency of the oscillator. Substituting Eq. (3.41) into Eq. (3.26), and inserting this result into
Eqs. (2.1) through (2.4) gives

EC - Vo + kg qdYS(Y) W"e(V); WCe(p) -1 (3.42)

Cf - kgfdvS(,) Wc, (); Wc, (Y) - 1 (3.43)

0AC - Vo +kaf dS(') W%,); WjC() -lnu (3.44)

ic a- sa'dJ~l') Ws u) Ws(a') - [1 - inu]. (3.45)

These classical weighting functions WC (P) are shown in Fig. 1. To allow the zero of energy to
be set arbitrarily, we include V0, the energy of the system treated classically if all oscillations
are stilled. The expressions for energy and heat capacity reduce to the familiar classical results

EC. V0 + 3N T (3.46)
Cv - 3hk#. ,(3.47)

D. Quantum weighting functions
The quantum mechanical partition function for a single harmonic oscillator is1

qQ e)- ' " (3.48)

where the superscript Q indicates that the variable is derived quantum mechanically and again
u i Ph, is the reduced energy. Substituting Eq. (3.48) into Eq. (3.26) and inserting this
result into Eq. (2.1) through (2.4) gives

EQ- V.+ kg dvS() Wro); W2a) - A + U (3.49)

C$ - W& (Y); W& (U 2e) (3.50)

VA 0. Vo+ k, d1 $(P) WA WA - In (3.51)
40. w(,) ~ WA(a') tl -).

S" k# dWS(v) - - in( - (3.52)

Fig. I shows these quantum weighting functions WOW().
For a system which closely approximates a set of harmonic oscillators, such as a perfect

crystal at low temperature, 1. 9 the above equations alone can be used to compute the thermo-

dynamic variables.

E. Quantum correction weighting functions

The quantum corrections (indicated by the superscript . ) are obtained by subtracting the
classical representations from the quantum mechanical representations for the given thermo-
dynamic variable.

W"(V) - WO()- WC(V) (3.53)
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Cv' -C9 CF kfdwS (P) Wt.(Y); PC (V) 1 l.P-i (3.55)

e-1A"- AQ ACa k# d-)W A I - mnu (3.56)

S-S - -S kafdS() W'(): Ws"(p) U i I-eU

+ tnu - 11. (3.57)
The quantum correction weighting functions W"G.) are also shown in Fig. 1. Note that follow.
in$Eg s (3.1), (32.and (3.54)-(3.57) we can partition if we wish the qatmcorrections

aogdifferent ubsets of atoms, for example diferent elements, different. cheical environ-
motso the same element, different molecules, or molecules in different environments.

1Y. MLECULAR VYNAhICS RESULTS FOR LIQUID WATER
Wate is the most important Of all solvents, and the molecular level understanding of its

bulk Properties is of considerabe intrinsic interest, We have thus chosen it a a test cas for
out techniques. A quantum calculation for a system of molecules large enough to adequately
represent liquid wate is at present impractical, and thus themodynamic quantities are Com-
puted by classical mechanics, usually by Monte Carlo or molecular dynamics techniques Such
classical molecular mechanics calculations on liquid water have been discussed in reviews by
Stillinger,35 lameS,44 Wood,45 and Deveridge et &al46 Goal and Hackny 07 have writtn a
compeesv bibliography for earlier molecular dynamics in general. It will be shw for
liquid wate that quantum corrections ame needed for both inter and intramolecular maoum to
match experimental quantum reality.

A. Liqud wafte petastlals and paseve cemputr slositlatlem
A insir obstacle for any molecular mechanics computer simulation is the developomt of

Ma Mutt potential surfae. t Danexeimental dama and quantum calculations are valuabe to
this end. Demal and Fouler4l (BF) in 1933 have given a rigid three point charge plus
Leonnard-Jones potential for vwe. An empirical potential for water was introduced in 1951 by
Rowlinen 4 (ROW), ad tested by VDre and Watts. 5 2 This is a rigid four point charge
model with a Lmnnard-Jonee o;ygn-xygen potential. The analytical form of the Rowlinson
potential baa been utilized in sevedmraled potentials, namely BNS and MSF2 Dn-Naim and
Stinger intraduced the DNNS potentil$inh 1972, ad Rabman and Stiinger5 $5 and otharsS2

utilized it in several test Studies. After finding the potential too terahedronafly directionals5
and noting an improvermnt aftr ma energy rescallnge Stillinger and lhman initroduced the
ST2 potential57 in 1974. SF2 has been used and testd extensively by many wodmn).94

Shipma wA Scheragsat have developed a seven point charge effbetive pair potential (SS)
r! for water using a variety of experimental data. Both water dlmerdl and ice-like water duster 70

1.7 studies have been carried out. In an attempt to include intramolecular vibrations, to allow for
possible molecular dissociaton,56 and to account for some of the nonadditive Interaction7t

between waters, Lemberg and Stillinger introduced a central force potential 19 (LS) in 1975. In
this scheme both bonded and nonbonded oxygen-hydrogen Interactions use the same potential
as do all hydrogen-hydrogen interactions. It has been both fuarther applied72 and improved73

(LS2).
An ah bft water potential prepared by fitting analytical functions to quantum mechani-

cally calculated energy versus nuclear position data was developed by Popkie. Kistenmacher and
Clementi74 in 1973 at the Hartree-Fock level. Several studies' 5*8 have used this potential
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(HF), and it has been found that the neglect of electron correlation effects leads to significant
inaccuracies.' S-7 7 78 In response. MStsuoka, Clementi and Yoshimine st carried out ab iniko cal-
culations with configuration interaction to account for correlation effects. The resulting poten-
tial (Cl) has been tested by several investigators. 63. 67. 82-87 A specific comparison of the HIF and

," CI potentials has been carried out by Swaminathan and Beveridge. 88 The CI potential has been
criticized because of lack of agreement with experimental liquid density, 37 its poor reproduction
of the second virial coefficient of steam83 and the high rms error in fitting the original calcula-
tions.89

Watts has provided a flexible water dimer potential 90 (WATTS) in which a largely empifi-
cal intermolecular potential is complemented by an intramolecular potential derived from vibra-
tional spectroscopy. The WATTS potential has been studied and criticized by McDonald and
Klein. 89.91

Several more recent water potentials deserve mention. Stilingar and David92 have
developed a polarization potential (SD) in order to describe deformable water molecules and
Stillinger has studied its dynamic properties. The importance of non pairwise additive effects
for water is also stressed by Danes et al,9 4 and they introduce a polarizable electropole model
(PE) and tes it in a wateramino acid system." Goodfellow% continues this study of coopers-
tive effects and the PE potential by showing how the PE model can be efiently applied. The
present paaateuization of the PE model has been criticized receantly because the oxygen-

*oxygen radial distribution agrees poorly with experiment.46 Nemenolf, Snir, and Scheraga"
have developed an empirical technique (EPENI2) for potential function development which has
been revised by Marchese, Mehrotra and Deveridge.98 Berendsen et al" have produced a single

. point chare (SPC) potential with Lennard-Jones interaction between oxygens n order to han-
dle conveniently protein-water systems Jorgens has developed a set of transferable inter-
molecular potential factions (TIPS) for application to organic liquids and water.r0 Ramers,
Watts, and Klein 01 propose a revised version (RWK2) of the WATTS potential.

Many molecular dynamicS4.57."1.64.72.31 I7.91.102 calculations have been carded out a
well a Monte Carlo7..&7.4C . 50 2.624 ' 67 .74 .73.7 . IL I4.IS 100. 101. 103. 104 Calculations on liquid
water using most of the potentials described above. In addition, Weres and Rice'O discuss the
calculation of liquid water themodynamic properties and their quantum corrections using the
BNS potential (with some modifications) and a cell model viewpoint.

Several papes have tested and compared the vauiety of water-water potentials, often with
disappointing results. Morse and Ricet 0 calcula some of the properties of ice with many of
the above potentials. The results mise serious questions about the ability of ST2, WATTS, and
LS2 to accurately reproduce the properties of ice while Cl, with the exception of reproducing
too low densities, fares well. Reimm and Watts10n make a related comparison extending to all
three phases. WATTS, ROW, and BNS reproduce the second viuial coefficient of steamn well
bu fail in the oher two phases. CI and Sr2 do wall for the llquid ph s but fail with ice and
steam They conclude that all models tested are generally inadequate to handle all three
phases, but that their revised RWK2 potential fares best.

. Mlkeelda dpmales
Our molecular dynamics calculations are carried out on a system of 250 water molecules at

a density of 1.0 c an"3 and a temperature of 300 K with cubic periodic boundary conditions
using a special molecular mechanics pcaerunning on an array processo. 107 105 Experien-
tally, this density corresponds to a pressure of 85 atm with a negligible resultin differc'¢0 9 of
0.012 W moleC' in total energy compared to a pressure of I atm which corresponds to a density
of 0.997 g cmn" . Previous molecular dynamics calculations of thermodynamic quantities for
water have been carried out using an array processor by Rapaport and ScheragaI 7. 110 who stu-
died a sample of 343 did waters using the CI potential with long runs and by Swope, Ander-
senD, erm , and Wilson 102 who studied the properties of water clusters. The software used
previouslY107  8 has been augmented by an intermolecular force and energy calculator for
water as implemented by Swope and Andersen. II1 This calculator utilizes a piecewise fifth order



I* --° + . . . r- , . - - -

1°%

WAVENUMBERS (1000 ca')
0 0.5 1.0

15"A CSH(1)15

52 10 

0 5O 01N2

O 1 2 3 4

un PhV

I WAVENUMBERS (1000 ca"f)
' 0 1 2 3 4 5

15 ""

AE

-,( fr heoxge ton e oeueo aetesm c,(' b)-cy 0 a n

energ u- 'h I 0. p kf n t. feuny hesed-lgt sicue
uine. iigth oalnme of eualen hamncoclaos"oraprl amncs

5

0I
O0 5 1020

i; u- Phv

rG. 2. Velocity spectra times the speed of light c normlize d for one molecule o HrO at 300
K d 1.0 cm- , min the W ints po al with 250 wme and cubic eiodic boundary it..

3;: ditionts. The lower panlel cotains cSN(P,) for the hydlrogen atoms per molecule of' water,
: S r (Y) for th oxygen atoms per" molecule of water, the sum, cM(P) + So (P)1- cSMol(P), and

the cen ter of mass1 velocity s pectn c ..w(v), Th upper panel is a blowup o the low fre-
~quency mlon of the lower panel. The lower horizontal scales ar in terms of the reduced

enryu - / hr In which 19 - (Q& 3 "1 ad v, is the frequency. The speed of' light c is included
so that the integral o €d() In cm vs the upper scale of wavenumbers in cm-1 will be dimen-
sionless, giving the total number of equivalent harmonic oscillators. For a purely ham'onic sys-
tem the velocity spectrum S(P) would live the number of harmonic modes per unit frequency..
Note that the H atoms dominate Sfqo(&) above 300 cm " and the 0 atoms below it.
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polynomial fitted to the analytical potential energy functions as a function of the square of the
distance between the two atoms being considered. It thus both allows a general algorithm to
evaluate the polynomial previously fitted to arbitrary analytic functions and eliminates the
necessity of a square root operation.

The method for applying a switching function as developed by Andersen and Swope
smooths each water-water energy contribution to zero as the corresponding oxygen-oxygen dis-
tance passes through the switching region, which for our system extended from 0.85 to 0.90
am. This technique eliminates the problem of artificially created monopoles (and possibly large
dipoles) normally encountered by an atom-atom force feathering or truncation method as only
part of the water molecule passes through the feathering region (and is possibly imaged). This
artifact s especially pronounced with water unless the Andersen-Swope technique is used. as
the partial charges on each atom are relatively large.

The semiempirical flexible water molecule potential developed by Watts90 is used. The
intramolecular potential is a standard Taylor's series in internal coordinates about the potential
minimum as derived from vibrational spectroscopy. The intermolecular potential is peirwise by
atoms and fted to the second vial coefficient of steam.

Equilibration of the initial water system is accomplished by following periods of dynamics
(0.1 - 20 picoseconds) with ndomization of velocity according to a Maxwel.Boltzmann dis-
tribution at the desired temperature util the temperature of-the system stabilizes. The total
simulation time involved in equillbrati is approximately 60 picoseconds. The time step of
inteaton during equilibration is 0.5 femptoeconds while for the data collection a time step of
0.25 fempeeMcad is used.

The velocity data is accumulated by selecting out the velocities every 12 time steps over a
period of 50 O00.time step (12.3 picoseconds total simulation time). A mor elegant approach
would be to use a digital low-puss flter before SMplfnt. 2 The @u and hea capacity data
re th result of a much longer series of seven runs for aoal 380000 time steps over 95

C. Velefty Vleehna
The vdocty spectra S(P) shown in Fig. 2 ar calculated by fat Fourier transforms of the

velodty time histaies of various components of the system. We defs the following normal-
ied vod spect

S'j,) - 4 (4.1)

S0 L. fk~ £ m D(vj9(:)> (4.2)

S04) SO() + 4(r) (4.3)
S -() 4w f f MnO<" D(vjM(r)j> (4.4)

M ji

where m° , 0n, and min' represent the masses of an oxygen atom, hydrogen atom, and water
molecule respectivel/, D is the spectral density operator defied in Eq. (3.2). v°O), vjf'() and
vf(t), repmt the velocity time histories of the jth oxygen atom, hydrogen atom and molec-

lar center of mss respectivey, M is the number of water molecules, where M a N/3; and a
factor of IIM has been Intmoduced to normalize the velocity spectra to that for one molecule of
water. The contribuon to Sff#(&') by both the oxygens and the hydrogens is determined by
computing each spectrum, SOv) and S,(P), separately. The high frequency vibrational peaks
composed mainly of the oxyge-hyd4og". vibrations ae easily seen in Fig. 2. The center of
mass velocity spectrum of the system is also computed and its spectrum reflects the highly
damped vibrational modes of whole water molecules.
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The area under Ssmo(r) in Fig. 2 equals 9.0, the equivalent number of harmonic oscilla-
ts (including hindered traMslation and rotation) per molecule of water. as expected from Eq.
(3.13). (The speed of light is introduced to make the integral versus cm - ' unitless.) The dou-
ble Peak in the tang. 2600-00 cm-' which COIrespond, to the symmetric and asymmetric
stretching modes of the water molecule has an area of 1.89. The peak in the range
1200-2600 an- I which crrenspond. to the bending of the HOH bond angle has an area of 1.00.
This substantiaM the view of S(&) a a density of normal modes and further suggests that the
dloe asso iatio of the ter moeus in the liquid phase b ,s shifted some of the high fre-
quency smetching moie down into the low frequency region. '

In piniple A poeunthd with both intra Ind intermolecular degrees of freedom like the
WATTS pOent we hve wed, ould take into account the frequency changes from gos to
liquid. The actual frequeni for die WATTS potential for the gas phase should be dose to

*' the hroc valuet D e rt - 3832 cman (symmMric stretch), P2 - 1649 cm - ' (bend), and
2" 3943 oan- (esynmne~ric stretch), cWMpured to the computed liquid phase peaks centered at

3680, 1740, and 3760 cm' dmm in Fi 2. in real water, the infrared and Raman spectra
sow the gas phase anhruic fequMiM114 to be 3652, 1595, and 3756 cm- ' and the liquid
phme0 itls shows a bendin peak at approximately 1650 cm-1 and a broad stretching peak cen-
tered at approximately 3400 cm- ' with PeaP a subsidiary peak at approximately 3200 cm- 1
Thus the WATTS vibratin sft from gs to liquid phase qualitatively resemble the real
water shifts with age sft dowlnwa in frequency for the stretching motions and a smaller
shift upward for the bending moem, but the agreement is certainly not quantitative.

Fm Scm (0) in fIt. 2 and fq. (3.22) we obtain for the center of moss diffusion
coeffiient D of water a value f 4.08x 10"mcs- t Compared to the expermental VaUe 1 6 1 17 of

2.42 x 10"m2'1 for liqud warer at 300 L The pcislon of our reported value is questionable
became we selected out my twelfth velocity rather than all velocities for the fast Fourier
,raOt m due to compm mmorY fletlom, sMd a more rliable value could be computed
from the asymptotic dope of the men square dSlaCment of the center of mass for a long
molecular dynamic rim. It should also be remembere that the bite size of the periodic
boundaries may aet the lM W e Mad lowest frequency motions and in particular

othat hydrodyfmic or coemte moslem Ivolving my M oleu may no be accurately han-

erni en et d* have repod a R dslty of the center of mass of rigid molecule
liquid water, un the previoudy deacubed SiPC poeaslel, which is strily similar to our
Sem(,). They report a dfim coeffienM of 3.6 x 10"m "'.
D. Qmtm P.m

The dif nc e between the dams and quantum mohical weighting functions W(6)

arises from the difference between the csa and quantum harmonic oscillator partition func-
tions q(P). In wthe leicl imit of h - 0, or equivaleny u - 0, - 0, or T-- .,this dis-
tintion disappeam,

lint qO(r)- Uto qC(). (4.5)
This implies

lim WO() lim W () "lim WC(A,) (4.6)
h-0 -0 V-0

and thus,
WI(O) - W0 (O) - WC(O) - 0 (4.7)

in all cues, as can be seen in Fig. 1. The divergence of W2(&) from WC() 3as P increases
results in a preferential weighting of high frequency motions in the calculation of quantum
corrections.



J.
c-;1- -7.

Es *14.

Table I gives the liquid water quantum corrections computed from the velocity spectrum
S,O(P) from EqL. (4.1) to (4.3) as shown in Fig. 2 and the quantum correction weighting
functions W4(,) as shown in Fig. 1, using Eqs. (3.54) to (3.57). The curves of the products of
S(P) and WI' for energy, at capacity, free energy and entropy are shown in Fis. 3 to 6.
illustrating the contribution to the quantum corrections as a function of frequency and of atom
type. A separaton is nde for the purposes of Table I in frequency space at 1200 cm-

between the a and intamolecular motions for liquid water. Note that the inter-
molecular motil, the hindered translation and rotation, contribute substantially to the total
quantum corres

TABLE L Inter- and intramolecular contributions to liquid
erIM quantum cetion s at 300 , per mole.

Inw Intra Total
(0.1200 cn-') (1200..00 cm )

":r) 4.2 45.0 49.2
,4£, (i/K) -11.0 -23.8 -34.8
A £011) 2.2 33.4 35.6
SaU/IO 6.5 318 4S.3

Clasicaly, a harmonic oscillator contributes kg T to the energy regardls of frequency as
a result of equlpatition of eaerly. This produces a straight line for the classical weightng
fmnction in the top p-od of ft 1. Quantum mechanics, however, requires that a harmonic
oeclftor contain a minimum or eo point eaergy of h,/2. For a harmonic oscilator with
hrv << k# T, this Mqiemen is uimporant and quantum effects am small. In contrast, a
quatum bermonic oscito with ha >> k, r hm an aveav eera y naear hP/,l N a result

(4.8)

Thsi the quanum Was a large for a high fequency harmonic scllator as it contributes
kv/2 to the enerly istead of kAT ". Table I shows a value of 49.2 ki for the total quantum
correcw to emlr. Orhm aacconte for this quantum ect by introducing a constant
Into the poteniald -enra umction. Was pearaecopie dewa Eluenberg and Kauzmann 10 have
calculated 55.45 U a a zeo polit enegy

Hoe capadty Is uniqu in tha it Al in a negatve quantum corection, and it has the
igmni amt catbal fom the l frequeny region compared to th oer corrtons

we have listed. As a muuis of qulalmel of enrg, te deal harmoni acilator contri-
butos ke to C, rp m of frncM. ThI1 we a miot ine in the ne to the top
panel of A. 1I.h atmm, th p um me ed malc ociator with hr >> kT is
•smck" in the round M nd chmm vmy Ule in response to danges in mpratue. Asa
result,

Thus, for eac hmoi omel lt kor >> k T. k# mm be subtracted from the classically
calcuated, C, The Importanice of the low rbsmsmy mitriton to te qat correction for
constant volume heat cac y reuts fm Me road dvrge w () and W, () as ,P
Inceases from zero.

The equain A - £- 7S holds in an a oous manner for the qumnm corrections a
a msl of dh lNa form of th quatum correctiom eqdon. The energy tra dominates
for harmanic osillators and thus the quantum correction for free energy is always positive.

The reader may be surprised that the quantum correction for entropy is positive. A quan-
turn mechanical harmonic oscillator with ha, >> kiT is stuck in the ground state and

::. . . . .
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FIG. 3.1 Fa qwm ca mcrves for liquid water for H atoms, for 0 atoms, and their
sum livial the tod H.4. Flte Is the Xvuc of the speed of' HM , the velocty, spectrum
$ ,), sod the ael qwlam coilction wetlhtin8 function W; () vs the reduced oscilltor
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The interal or' the proMdc S(,) W.11,) vs a, lives the quantum correcion to enerly, as shown
In Eq. (3.54). The Sire aio iilustnttes how the quantum correction partitions between the 0
am end the H atom whc dominate at all but the lowest frequencies.
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FIG. S. Helmholtz free energy quantum correction curves for liquid water for H atoms, for 0
atoms, and their sum living the total HIO quantum correction. Plotted is the product of the
speed of light c, the velocity spectrum S(r), and the Helmhohz free energy.quantum correc-
tion weighting function W'(a) vs the reduced oscillator energy usflh, on the bottom axis
and the wavenumber equaient at 300 K on the top axis. The integral of the product
S.($) .W'(,) vs a, gives the quantum correction to Helmholtz free energy, as shown in Eq.- '(3.56).
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contributes almost nothing to the entropy. Thus, as seen in Fig. 1,

Um WS(AV) - 0. (4.10)

In contras, the classical harmonic oscillator weighting function has the following properties.

im wC(v)- -. (4.11)

lim W?(a.) - -. s. (4.12)

The first equation indicates that an unconstrained particle has an unlimited number of available
sttes. The second equation results from the difficulty of applying the third law of thermo-
dynamics to the classical representation of entropy for a harmonic oscillator. Because of the
negative sin of the classical weighting function, the quantum correction for entropy is positive.

Figures 3 to 6 show the products of the velocity spectra 5(p) with the quantum correction
weighting functions W(,) for energy E, constant volume heat capcity C,, Helmholtz free
energy A, and entropy S. Since S42o(,) can be partitioned into separate contributions from
the hydrogen and oxygen atoms, we also partition the products S.o(r) W"l(,) and thus com-
pute separately the hydrogen and oxygen atom contributions to the quantum correctons. The
hydrogen atom motions dominate except at the very lowest frequencies which nave little weilht
anyway.

L. Emaily
Seven water samples with different energies are created and equilibrated, and the average

temperature for each sample, calculated over at least ten picoseconds running time, is plotted in
Fig. 7. A straight line is fitted to the points, and the t" classical energy EC corresponding to
300 K is calculated. By averaging over a subset (500 time steps selected over a time period of
1.25 plcoseconds) of a complete run at 300 K we also compute the average value of the
intramolecular potential energy V; the intermolecular potential energy Vo and the kinetic
energy A as shown In Table U. Because Ec is calculated from the fitting shown in Fig. 7 while
V .', V, and E are calculated from the short subset discussed above, there is a
0.1 U mole" discrepancy between the values shown in Table II for EC and for the sum of its
components V, + Vkw + F. The quantum correction El is obtained by integrating the
function Sy) W;(r) a shown In (), (3.54) and Fig. 3. Addition of the kinetic energy (calcu-
lated from lan velocities 111) to the total potential energy results in conservation
of energ to one p t in thirty thousand with the 0.25 fs integration step size used. As sug-
gested by AndersenI1 9 we graphed the standard deviation of the total energy versus the square
of the time step for several molecular dynamics runs. The resulting nearly linear plot vifie.
the accuay of our software and hardware as the Vedet integration algorithm lives an error in
total enery In propoton to the square of the integration time step.119 To calculate V&., we
fm remove a constant rep esenting the zero point energy contribution from the original
WATS m olca potential.90

i.4

.. - . --



p., -. 0) v.

-I'It

1- .. Z

~ I I I I' I



.,

-16-

TABLE IL. Energy (k mole-').
VsW 5.2
" Ymm-42.1

11.2
"C -25.6a
9% 49.2

,: -Ec + E% 23.6
Em 2 1.5 b

'Calculated from Fig. 7
bste Table IV.

MfDonald and Klein" calculate with molecular dynamics an internal potential energy of
-33 ki mol-' for the WATTS potential for 273 K and 1 gm cn -t and Reimers and Watts1ot

rGMpe a Monte Carlo calculation giving an internal energy of -29.2 kJ mole- ' for the Watts
potentl at 29X and 0.997 gi cm-1 Both calculations differ from the present one in that their
water molecules are constrained to be rigid. To determine the effect of this we increased the
force constants of our waters first by a factor of four and then sixteen while decreasing the time
step first by two and then by four. The result is that the intermolecular potential energy
decreses (becomes more negative) with changes on the order of 1 WJ to 2 kJ, indicating that
the introduction of flexible waters increases (makes les negative) the intermolecular potential
energy over a rigd water calculation. Reimers and Watts run at 298 K and the 1 atm density of

M0.997 U cm- compared to our temperature of 300 K and 85 atm density of 1.0 gm crm - . We
Performed a special test un at 0.97/.m cm-t and 298K and calculated an intetmolecular
potentia energy only different from the 1.0 n c In value, in line with the
0.012 WJ mok- shift expected 1 9 for the total potential energy from experimental thermo-
dynamic - euueneI.1 We perform a molecule-by-molecule imaging with force feathering
technique following Andsen rather than potential cut-offs as used by Reimers and Watts or
Ewad sum 1 use by McDonald and Klein. To explore the effects of potential or force
smoothin or cotoff, we cared out several additional test rum whose results are summarized
in Table UL The sunderd deviations are given within parentheses and a time step of 0.25 fs is
ued for ead rinm.

TABLE IL Energies in kJ mole- ' (with standard deviations
given in parentheses), a well as bond length and bond angle distortions

for several cutoff and feathering boundary methods.

TV II V C m -it m,

.ANDD N S .2 (0.22) -42.1 (0.26) -25.6 (0.00099) 0.52 -1.0
CUTOFF I S.5 (0.32) -58.8 (6.1) -41.8 (6.4) 0.56 -1.0
CUTOFFI 5.5 (0.32) .50.4 (0.45) -33.6 (0.029) 0.56 -1.0

AA SMOOTH 27.5 -111.7 1.8 .1.7
1o 4.7 0.2 -0.1

Boundary effects are a significant problem for systems like liquid water where the long
range Coulombic forces extend well beyond the dimensions of the model. One way to deal
with these nonzero forces near the boundary is to choose a cutoff distance beyond which the
potential energy s set to zero. For an atom-atom central force system, this cutoff of the poten-
tial can also be done atom by atom (CUTOFF I in Table i11). and the resulting forces necessary
for molecular dynamics calculations are then the derivatives of the potential within the cutoffdistance and zero beyond, with a delta function at the boundary which being of measure zero in

...-
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length is never seen by the dynamics calculation. Such energy-force pairs are inconsistent due
to the effective neglect of the delta function force term at the cutoff distance which prevents
conservation of energy in actual molecular dynamics runs as required for microcanonical sys-
ters. The atoms fail to feel the force delta function and can drift back and forth over the
cutoff boundary with resulting large potential energy fluctuations. For ordinary Monte Carlo
systems where forces are not needed, this difficulty is avoided. We suspect, however, that the
large fluctuations in the radial distribution function which occur at the cutoff distance introduce
significant perturbations to the system. Table III shows the results of a sample molecular
dynamics calculation (CUTOFF I) using a cutoff of 0.875 nm at the midpoint of th 0.85 to
0.90 nm Andersen-Swope feathering which we used for our actual thermodynamic cale.lations.
Notice that the standard deviation (in parentheses) for the intermolecular potential energy is a
full flty-seven percent the kinetic energy.

By cutting off the entire potential molecule-by-molecule 64 using either the distance
between the two centers of mass or the very similar oxygen-oxygen distance as the functional
variable, the effectively neglected delta function force terms in molecular dynamics calculations
are reduced significantly in magnitude as they now represent truncated dipole-dipole rather than
monopole-monopole interction. Molecule-by-molecule cutoff is also preferable to atom-by-
atom cutoff for Monte Carlo calculations as the fluctuations in the radial distribution function at
the cutoff distance should be greatly reduced.

One way to conserve energy in molecular dynamics runs while still using the atom-by-
atom cutoff method is to set the atom-atom potential beyond the cutoff distance to its value at

* the cutoff distance (CUTOFF I). The energy-force pair is now consistent and for molecules
like water where the forces are essentially Coulombic at the cutoff distance (and the total
charge on each molecule is zero) the energy contribution for a molecule-molecule interaction
conveniently sums to zero when all the atom-atom interactions are beyond the cutoff distance.
The results for this method are also shown in Table MI (CUTOFF II). Note the order of mag-
nitude reduction in the standard deviation of the total energy. In both cutoff methods, waters
have a tendency to astraddle the cutoff distance boundary in such a way as to reduce repulsive
and increase attractive atom-atom interactions. For CUTOFF II, this has a much smaller effect
as the potential energy for any atom-atom interaction changes little across the boundary. For
CUTOFF I, however, each atom-atom potential energy function is truncated to zero at the
cutoff distance which causes an artificially low average intermolecular potential energy.

Another method which might seem reasonable to try in order to create a consistent
energy-force system for molecular dynamics calculations is to smooth each atom-atom potential

Ssepuately to zero (AA SMOOTH) in some smoothing region and then take the derivative to
obtain the force. Indeed such a technique might be useful for systems where the value of the
potential at the cutoff distance is near zero. For water this not the case, however, and AA
SMOOTH is totally useless in this application. For our test run we smoothed each potential to
zero from 0.85 nm to 0.90 am, and the corresponding force was calculated. The resulting
energy values as shown in Table II differ drastically from the experimental ones due mainly to
the large fluctuations in the radial distributions near the cutoff distance. Large forces (20-30

times larger than for the unsmoothed potential) in the smoothing region cause such lhictuationsand are a result of the steep slope of the potential necessary to smooth it to zero. One might
view this effect as similar to smoothing the neglected delta function force term of the CUTOFF
I system over 0.05 rui. Standard deviations are not liven for AA SMOOTH because the total
energy of the system continued to rise over the course of the run, presumably a consequence of
the large forces Involved.

The technique by Andersen and Swope (ANDERSEN) which smooths each entire water-
water potential to zero may be viewed as smoothing the delta function force terms of a
molecule-by-molecule cutoff or equivalently a dipole-dipole interaction over a small range, 0.0S
nm in our case. It lives the best energy conservation and smallest V, 4, and V,, fluctuations
as shown in Table II. In addition its waters are put under the least "stress" as measured by
vow
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It may be concluded from the data in Table III that there are several advantages to using
the ANDERSEN method. It should also be noted that the choice of method of handling boun-
dary effects significantly influences energy calculations with differences on the order of
0 kJmole- .

Table IU also contains information on the intramolecular potential energy, the bond
- . .lengths, and the bond angles for each system. Vm may be seen as a rough index to the

"stress each water molecule is experiencing. For an ideal gas (1G), i.e. for the same
intramolecular potential with the intermolecular potential turned off, the intramolecular poten-
tial enaggy at 300K is 4.71kmole - 1, 0.96Imole- above the (3/2)kT value of
3.74 U mole - ' one would expect if no anharmonic or centrifugal distortion effects were found.
In the liquid state each oxygen-hydrogen bond on the average is stretched and each HOH angle
on the averge is reduced below the equilibrium value, thus increasing V,,, above the ideal gas
level, which is itself above the harmonic equipartition value.

For a non-rigid calculation at 295.4 K using the LS potential, Rahman, Stillinger, and
Lemberg72 report VYm + w - -34.8 U mole- ', while we calculate for WATTS at 300 K
.Vn + V, - -36.9 U mole-. In their partitioning between Vft and Vi, they assume,
but do not measure, that V, is given by the expected undistorted harmonic oscillator values,
an approximaion which we see to be incorrect, at least in our case, due to anharmonicity, cen-
triful distortion, and intermoleculr force induced molecular distortion.

The experimental value to which the calculated intermolecular potential energies should
be compared deserves some discussion as two significantly different numbers are quoted
throughout the literature. One way to obtain the intermolecular potential energy of liquid water
is to equate it to the difference in energy of the fluid and vapor states. This is calculated by
subtracting PV from the heat of vaporization of water at 300 K. Using this method, Dashevsky
and Srkisov104 obtain for the intermolecular potential energy from experimental data
-41.0 k mole"' at 300 K, and -41.4 U mole- ' at 298 K. As pointed out 1h/ several
workers, 37. 100.101 , 1 0 12 however, the bending and stretching frequencies of ..rjer change
upon condensation, and this difference in intramolecular energy must be acoN&* for, :.t veAl
a the correction for conversion of free to hindered translation and rotatiq. ,us & aen
estimate a correction on the order of 7.5 U mole - I which would lead to an intermolecular
potential energy of -33.9 1 mole" for 298 K. This may account for the variation in experi-
mental intermolecular potential energy quoted in the literature, as some workers use the
corrected -value for intermolecular potential energy while others do not. It should also be men-
•doned that the debiitions used of *internal energy and "internal potential enerWy" are not
always well spelled out or consistent among different authors, maldng comparisons sometimes
difficult and confusing.

The equivalent Ew experimental value for total energy is the difference in energy
between liquid water at 300 K and ideal nonintercting water vapor at 0 K with no zero point
vibrational energy, mauing energies from the bottom of the potential well for non-interacting
molecules. It may be calculated as follows.

E-0 K(l) - A0 K(W )

- EOg() - SO .(M)] [+0 K(i) - Eo0 (wp)] (4.13)

[HMK() - HO V(Ie)] + Ho K(kr) - HO K(vp)] (4.14)

because £ * H for liquid water and ice. Including the zero point vibrational energy lives the
results shown In Table IV.
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TABLE IV. Experimental total energy Wk mole-').
H30o (/Kq) - HO K(ke) 13.44
HO K(ICe) - Ho K(p) -4 7. 3 6b
Vibrational zero point energy 55 .45b

Er 21.5
ON. Dorsey, Pfopenies of Ordny Watr

Sub.nce, (Hafner Publishing Co., New York, 1968)
bD. Eisenbeg and W. Kauzmmn, 7he Smnwe and

•opehwnt of Water. (Oxford University Press, New York, 1969)

Our computed E v - 23.6 i mole- ' and experimentally derived EOP - 21.S WJ mole - '
toal eneres as shown in Tables 11 and IV thus agree quite well, perhps better than expected
in light of the possible improvemets discussed in Section V below.

F. Hea capacity
The energy is fixed in a microcanonical ensemble while the temperature as computed

from Eq. (2.6) fluctuates about an average value. Seven distinct water configurations with
different energies are created, and the average temperature for ech sample is calculated over at
least ten picoseconds of running time. The seven points are plotted on the energy-temperature
graph in Fig. 7. A straight line is fitted to the points, and the slope is calculated, giving the
constant volume heat capacity. The results seen in Table V show quite good agreement with
experiment once the quantum correction is added. Note that the calculated value would
disagree substantially with experiment if the 11.0 Jdegtmole- t intermolecular quantum
correction for hindered rotational and translational motion had been omitted.

TABLE V. Constant volume heat capacity (J deV'mole-1).

CVC 106.5
CVA -34.8
OCfm C + 71.7
C V 74.5"

ED. Eisenberg and W. Kauzman, The Stnmre and
Propent of Wae,: (Oxford University Press, New York, 1969)

V. DISCUSSION AND CONCLUSION
The calculations for liquid water presented here am designed to illustrate the quantum

correction of classical thermodynamic quantities and not to provide the ultimate in accuracy for
those thermodynamic values. Even though the results agree well with experiment,
L r  - 23.6 vs EOP - 21.5 kJ mole - ', and C l' - 71.7 vs Cf" - 74.5 J deg' mole-', it is
dear that these classical calculations could be improved. For example, it can be argued that no
potential function yet exists for water which is adequate to represent both the inter and
inunolecular motions or which is even valid in an effective sense for all phases.l101 106 The
WATTS potential function which we use in this example calculation is no exception, having
been ritkized1 on the ground that radial distribution functions calculated from it do not agree
with experiment. It is unlikely, a we've seen, to properly account for the change in vibrational
frequences0, 37,120.123 on going from the gas to the liquid phase, as there is no direct coupling
between intermolecular distances and the intramolecular pan of the potential. The reader is
referred to the recent paper by Reimers, Watts, and Klein 10l for a comparison among various

* existing water potentials and a presentation of a revised Watts potential. The potential we have
used is clearly only an effective3S. 7 molecule-molecule potential, as it omits three (and higher)
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molecule effects3 5. 76.9296.124.125 which surely must exist. In addition, one could make a more
accurate calculation by including a correction 6.16. 3 for the tails of the potential beyond the
0.85 to 0.90 rm region at which we feathered the potential to zero or one could try other long
range correction techniques such as Ewald sums. 126 It seems clear from the large variations in
energy among different choices of boundary treatment that much more needs to be learned
about the effects of different boundary treatments on systems with long range potentials and
their convergence to experimental values. Related questions have been raised by Panpli. Rao,
and Berne 65 with respect to Monte Carlo calculations. The methodology of quantum correction
illustrated here Would work equally well with any or all of the improvements mentioned above
to the classical pert of the calculations.

A substantial amount of calculation is needed to achieve the accuracy illustrated in Fig. 7.
The long simulation time to achieve a stable average can be interpreted in term of the unusual
"stickiness" of liquid water. 62. 63 The 95 picoseconds of total molecular simulation time illus-
trated in Fig. 7 required 190 hours of real time on an array processor. 107. 108 The array proces-
sor speed is approximately 35 times 0 that achieved in optimized Fortran on a DEC VAX
11/730 with a floating point accelerator, and judging from previously reported figures, 62 5-10
times faster than a riid water calculation on an IBM 360/91. Our 2000 time steps per hour
when scaled for number of partices and cut-off radius is roughly comparable to the speed
reported by Rapaport and Schen a 7. 11o for their array processor molecular dynamics calcula-
tion for rigid water, taking into account that they use a predictor-corrector integrator, while we
only use one force evaluation per time step. The total number of atom-atom force evaluations
is I x 1011 and the number of calculations of the total force vector on an atom (summed over
all its pairwise potential interactions with other atoms) is I x 10'. This latter figure might be
roughly compared in compuationa effort to the total number of configurations tried in a simi-
lar Monte Carlo calculation, i.e. the number of times an atom is moved and a new potential
energy is calculated as a sum over all atomic pairwise interacions with othr atoms. Since each
molecular dynamics atomic forem evaluation delivers the three Cartesian components of the
atomic force vector in contrst to the scalar Monte Carlo computation of potential energy, it
might be argued that the proper number to compare to an equivalent number of Monte Carlo
onf guration tries is 3 x 10'. One might also compare the 380 000 time steps to an equivalent

number of Monte Cario passes through all variables. It has been argued by Rao, Pangali, and
Berne 62 that one Monte Carlo pass for rigid water can be compared in computational effort to
one molecular dynamic time step, but for problem accessible to Monte Carlo solution that
Monte Carlo may be several times more efficent in term of distance moved per pas versus
per molecular dynamics time step.

A very different way to compute dynamics and thermodynamic quantities which my in
time become practical would be a quantum force classical trajectory appmech 21 in which at
each time step in the classical trajectory the forces (for the dynamics) and the energy (for the
thermodynamics) are computed from ab bil quantum mechanics.

It is clear from these results that one can and should take into account quantum correc-
tions in testing molecular potential energy functions against experimental thermodynai mess-
urements. In particular, the intermolecular (hindered translational and rotational) motions in
strongly assciated liquids can lead to significant errors if the related quantum correction are
neglected in thermodynamic comparisons with experiment. Consider, for example, that the
intermolecular quantum correction to energy for our system is 38 percent of the kinetic energy
while the intermolecular quantum correction to free energy is 20 percent of the kinetic energy.
The intermolecular quantum correction to heat capacity is 15 percent of the experimental value
while the intermolecular quantum correction for entropy is 10 percent of the experimental
value.109 Similarly, motions in polymers (which can themselves be affected by solvent interac-
tions) may also need thermodynamic quantum correction, and the molecular dynamics method
illustrated here also can be applied in such cases.

An interesting aspect of this quantum correction technique is that after the dynamics
(which in general depend upon all the atoms) are computed. the quantum corrections may be

...............................
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calculated atom by atom, and thus the quantum effects on the thermodynamic variables may be
considered separately for different elements, different chemical environments of the same ele-
ment, different types of molecules, or molecules in different environments. An advantage of
the basically classical molecular dynamics approach to thermodynamics presented here is the
ability to visualize and understand intuitively the classical motions and frequencies responsible
for thermodynamic effects. For example, one can understand in a very pictorial way the domi-
nance of the water quantum corrections by the hydrogen atom motions as illustrated in Figs. 3-
6.

This technique for quantum correcting classical termodynamic quantities should be appli-
cable to a wide variety of molecular systems including polymers such as proeins and nucleic
adds, liquids, solutions and solids. For example the molecular dynamics method could be used
to compute end quantum corrt the heat capacity of biomolecules in solution, a quantity
known to depend on molecular conformation. Thermodynamic calculations can be made
involving both intermolecular and intermolecular degrees of freedom. In addition, this
approach can be extended to treat quasiequilibrium cases, such as the calculation of thermo-
dynamic quantities as a function of proge along a chemical reaction coordinate or thermo-
dynamic quantities for molecules in special surroundings such as boundary waters near a pro-
tein.
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